Cloud Properties from High Spectral Resolution Infra-Red Measurements Observed During CRYSTAL-FACE

Robert E. Holz, Steven A. Ackerman, Paolo Antonelli, Shaima Nasiri

University of Wisconsin-Madison, CIMSS

William L. Smith and Bryan Baum NASA Langley Research Center

Overview

- NAST-I cloud property retrieval algorithm
- Current methods to derive cloud pressure from NAST-I data (MLEV and CO₂ slicing)
- A new algorithm to combine with MLEV and CO₂ slicing to improve cloud top pressure determination

Cloud mean effective diameter (D_{eff}) and Optical Depth Retrievals

Input parameters for retrieval:

- I. Temperature and water vapor profile
- II. Cloud top pressure
- III. NAST-I observations between 8.5 -12 microns

Output:

- Cloud mean effective diameter
- II. Cloud optical depth at 11 microns
- Focus: The retrievals are sensitive to errors in cloud top pressure

Cloud Pressure Determination

MLEV (Minimum Local Emissivity Variance)

Strength: Accurate for optically thick clouds

Problem: Low sensitivity to optically thin

clouds

CO₂ Slicing

Strength: Insensitive to cloud fraction and capable of detecting thin clouds

Forward model required to simulate upwelling radiances

Problem: Optimal channels are a function of cloud top pressure

CO₂ Channel Selection Algorithm (CO₂ Sorting)

The selected clear sky CO₂ spectrum is sorted according to brightness temperature

The Sorted Clear Sky Spectrum

CO₂ Sorting: Sensitivity to Brightness Temperature

CO₂ Sorting: CRYSTAL July 3rd 2002

Cloud Altitude Frequency of Occurrence 3 July, 2002 1600 - 1810 UTC

Summary

 Accurate cloud top pressure is critical for accurate retrievals of D_{eff} and optical depth (see Shaima Nasiri's poster)

 Demonstrated a new algorithm which uses the sorted CO₂ spectrum. CO₂ sorting shows promise for cloud top pressure retrievals and for choosing optimal CO₂ slicing channel pairs.

Future Work

- Reduce cloud top altitude bias
- Apply to more data: AERI (ground-based) and AIRS (satellite-based)
- Use CO₂ sorting to choose CO₂ slicing channel pairs.
- Apply the sorting algorithm to the H₂O band.
- Combine CO₂ sorting, CO₂ slicing, and MLEV.

Particle Size and Optical Depth Retrieval Procedure

- The retrieval is based on the comparison between simulated and observed radiances
- Simulated radiances are computed for 18 micro-windows between 8.5 and 12 µm
- The cirrus scattering calculations are based on threedimensional randomly oriented ice columns assuming 6 different particle size distributions
- Multiple scattering calculations are performed for 26 different optical thicknesses between 0 and 20

MLEV:Solving Equation

$$\eta(v) = \frac{R^{ob}(v)-R^{cl}(v)}{R^{cd}(v,p_c)-R^{cl}(v)}$$

Retrieval Uncertainties

- Particle shape
 - Retrieval assumes pristine columns in the simulated data.
 Plans underway to include other habits, e.g., bullet rosettes
- Particle size distribution
 - Plans are underway to include more expanded set of size distributions in the form gamma distributions (Heymsfield et al. 2002)
- The retrievals are sensitive to errors in cloud top pressure

Cloud Particle Size and Optical Depth Retrieval

Particle Size and Optical Depth July 3rd 2002

The PS and OD Retrieval Sensitivity to Cloud Height

